

Aluminium Technology & Production in Russia

Victor Mann, Deputy General Manager, RUSAL's Construction Division

Soderberg technology

RUSAL

Over 80% of aluminium in Russia is manufactured on the basis of Soderberg technology

ADVANTAGES:

• No process areas:

-anode molding;

-anode baking;

-anode rodding;

-processing of butts.

 Metal manufacturing cost is ~ \$100 lower than for pre-baked anodes

DISADVANTAGES

• Environmental problems

including emission of resinous substances and PAH

- Difficult working conditions
- High specific consumption of carbon
- High specific consumption of electric energy

Can Soderberg technology compete with pre-baked anode technology?

Introduction of automated alumina point feeding

RUSAL

Advantages of automated alumina point feeding

Reduction of emissions due to alumina feeding without destruction of the cryolite-alumina crust between anode and wall (F total ~ 10%; dust ~ 12,5%; resinous substances ~ 3%)

- Fluorinated alumina feeding (reduction of emissions due to dry gas cleaning)
- 0,5-1,0% increase in current efficiency
- Possibility of increasing the amperage
- Reduction of fluoride consumption

Installation of dry gas treatment centres in potrooms

- ➤ Increasing recovery of fluorine compounds ≥ 99,5%, recovery of resinous substances and benzapilene up to 95 – 97%
- Decrease of dry cleaning dust and residues ~25 kg/t Al;
- Reduction of aluminium flouride consumption
 ~ 15 kg/t Al;

RUSAL

New opportunities of Soderberg technology

RUSAL

New technology on the basis of colloidal anode is being introduced in RUSAL'S pilot area and includes the following:

- «colloidal» anode technology;
- pot hood (tightness);
- use of cryolite-alumina charge;
- increasing efficiency of anode gases afterburning;
- new equipment for pot maintenance

Soderberg technology – pot sealing

Pot hoods:

• Provide for organised gas removal not less than 94 %;

Reduction of emissions, %:

- $F_{total} 12,9$
- PAH 38,9
- CO 57,4

Alumina

Charge

Cryolite-alumina charge: Reduction of emissions, %:

- $F_{total} 16,1$
- PAH 17,9
- CO 34,0

New equipment for pot maintenance

AMMIT .

RUSAL

Devices and complexes for:

- AlF₃ automated feeding
- anode cutting and molding;
- anode beam racking;
 delivery and uniform feeding of anode paste;

-centralised alumina
distribution, dense phase
- cleaning of studs

erg technology- ng perspectives	RUSAL			
Specific emission of pollutants on the basis of colloidal anode Soderberg technology, kg/t Al				
Soderberg technology (colloidal anode)	Recommended by OSPAR 2010 Soderberg			
0,60	F total not over 0,6			
45,0	Not fixed			
0,7	1,0			
0,01	0,01.			
	erg technology- ng perspectives sion of pollutants on the basis of Soderberg technology, kg/t Soderberg technology (colloidal anode) 0,60 45,0 0,7 0,01			

Soderberg technology – difficulties or perspective opportunities

Economic values of environmental upgrading by the example of Bratsk Aluminium Smelter

Value	Transition to colloidal anodes	Transition to pre- baked anodes
Primary metal output (x 10 ³ t/year)	1 100	1 100
Capital costs (x 10 ³ \$/t)	0.285	1.18
Production costs (\$/t)	~ 50 \$/t less than for pre-baked anodes	

Pre-baked anodes technology (PA-300 and PA-400)

COMMISSIONED: PA-300 December, 2003 PA-400 December, 2005

- > PA-300 technology audited by independent experts
- Plan of PA-300 technology demonstration (confirmation) to foreign financial institutions developed
- Aluminium smelter constructed in Sayanogorsk, the smelter will work on the basis of PA-300 technology

PA-300 technology

≻busbars – pot of high electromagnetic stability

➤Cathode shell – minimum deformation and improved heat emission

➢Lining, providing for bottom integrity and optimum energy balance of the cell

>Anode superstructure – new system of gas removal from the pot

➤ construction – fewer supports

387

Designing the pot

Ľ

The pot has been designed with use of ArcRusal, Blums – models of electric and magnetic fields, hydrodynamics and pot MHD-stability

The following has been used for heat balance:

ANSYS, STAR-CD – models of thermoelectric fields, strain-stress condition, aero- and hydrodynamics

Construction data

#	Name	Meas. unit	PA300
			technology
1	Number of pots in the potroom	pc.	168
2	Potroom dimensions	m	1210 x 27
3	Pot dimensions	m	15,68 x 4,76 x 1,78
4	Centre-line dimension	m	6,5
5	Number of cranes	pcs./potline	9
6	Transfer crane	pcs./potline	1,0
7	Weight of construction metalware	t/pot	37,5
8	Weight of the cathode shell	t/pot	44,4
9	Weight of the busbars	t/pot	53,1

RUSAL

Target project parameters

Parameter	RA-300	RA-400
Amperage, kA	320	400
Anode current density, A/cm2	0.88	0.85
Current efficiency, %	>93.5	>93.5
Productivity, kg/day	2412	3016
Electricity consumption, kWh/t	<13 800	<13 800
Average voltage, V	4.35±0.05	4.35±0.05
Consumption of anodos kg/t gross	550	555
net	425	430
Anode effect frequency, times/pot per day	y 0.05	0.05
Specific F emissions, kg/t	0.6	0.6

Comparison of RA-300 and RA-400 technologies

Parameters / Technology	RA-300	RA-400
Number of pots in potline	336	336
Number of potlines	2	2
Smelter capacity, ktpa	560	750
CAPEX for construction, \$ mln	1568	1875
Specific CAPEX, \$ ths/tonne	2.8	2.5
Specific annual metal output from area, tonne/m ²	4.2	5.1

At use of RA-400 technology, the reduction of specific CAPEX is up to ~ 300 \$/tonne of aluminium.

Principal design advantages of RA-400

In order to improve environmental indicators, extend service life, reduce consumption of materials and improve MHD-parameters of pots, RA-400 project implements new design elements, differing from RA-300:

- > gas exhaust system;
- > doubled anodes;
- > graphite, two-groove bottom blocks;
- > decreased socle height; and
- busbar design.

March 2004 - problem statement

December 2005 - start-up of first RA-400 pot

"SAAT" process control system

TIPPEAR .

Уставка АПГ Период АП

> Original control algorithms (including use of **Fuzzy-Logic and neuronets)** > The software package includes expert systems and control of overheating temperature. 023 Дата 🔻 🛓 🛛 Пн 28 Авг OK Текупцие сут Напряжение, Эл-зер О23, Пн 28 Авг. апряжение Ток серии Заданное напр. 4,600 4.550 4,500 4,450 4,400 4.350 4.300 4.250 4.200 4.150 4,100 4.050 4,000 3,950 3,900 3,850 3,800 3,750 3,700

Point-feeding system

>Alumina feeding in hyperdense phase. >Modular design, bunkers of the system are easily taken out. >Visualised operation mode of the system. >The system is similar to best foreign analogues according to technical characteristics. >Capacity - 40 tph. **>Low values of CAPEX and OPEX.**

High current density reduction technology

In August 2006, RUSAL started tests of the high current density reduction technology:

Parameters	Value
Current density, A/cm ²	>1.2
Current efficiency, % (expected)	>94
Electricity consumption, kWh/tonne (expected)	13 500-14 500
Gas hooding efficiency, %	98.5
Consumption of anode blocks, kg/tonne	430
Anode effect frequency, times/day	< 0.1

High current density technology. Advantages of the new technology.

Key results of studies of high current RUSAL density reduction technology

- Busbar design allowing for high MHD-stability at low ACD (reduced by 20-30%) was created;
- Cathode with increased heat dissipation and improved uniformity of current distribution was created;
- Anode superstructure for operation at high current density was developed;
- Bath composition for operation at high current density was developed; and
- Special heat and mass balance control algorithms were developed.

Future technology. Pots with vertical inert electrodes

Materials and technologies for wet (inert) cathodes were developed. Specific cost is ~230-250 \$/m² Stage: experimental-industrial tests

5 pots of S160M4 type with wet bottom are operated:

Estimates:

- ≻Service life of coating 4-5 years
- >Extension of pot service life
 - ≥ 6 months

Increase of current efficiency by 1-1.5% (CAPEX ≈ 200...300 \$/t Al)

Development of inert anode material \mathbf{I}

New metal and ceramic inert anodes were developed and tested in traditional conditions

A series of oxide-based anode materials was laboratory developed and tested.

Expected results in 2006: Usage of materials based on complex oxides - 0.5 years

RUSAL

Advantages of pots with vertical electrodes

- > Increase of specific capacity from ~10 to 50-100 kA/m³
- Reduction of specific electricity consumption to < 12 kWh/kg of Al</p>
- Possibility of conversion to low-temperature reduction
- > Expansion of the range of used types of anode materials!
- Significant decrease of CAPEX (pot and potroom dimensions are decreased by 3-5 times; specific costs for busbar are reduced)

RUSAL "Vertical" pot. Concept Horizontal pot Horizontal drained pot Vertical pot Pot type **Specific capacity** Reduction about 950^{°C} about 950[°]C about 800[°]C temperature + Anode service life Bottom is not cathode, less **Bottom with cathode** coating corrosion of materials Pot service life +/-+ Oxygen emissions, less salt **Oxygen emissions Oxygen emissions** evaporation, less exhausted Environment lining +/-+ + **Construction CAPEX** _ +/-+ **Production cost**

